Extensions 1→N→G→Q→1 with N=C22≀C2 and Q=S3

Direct product G=N×Q with N=C22≀C2 and Q=S3
dρLabelID
S3×C22≀C224S3xC2^2wrC2192,1147

Semidirect products G=N:Q with N=C22≀C2 and Q=S3
extensionφ:Q→Out NdρLabelID
C22≀C2⋊S3 = C24⋊D6φ: S3/C1S3 ⊆ Out C22≀C286+C2^2wrC2:S3192,955
C22≀C22S3 = C246D6φ: S3/C3C2 ⊆ Out C22≀C2244C2^2wrC2:2S3192,591
C22≀C23S3 = C247D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:3S3192,1148
C22≀C24S3 = C248D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:4S3192,1149
C22≀C25S3 = C24.44D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:5S3192,1150
C22≀C26S3 = C24.45D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:6S3192,1151
C22≀C27S3 = C24.46D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:7S3192,1152
C22≀C28S3 = C249D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:8S3192,1153
C22≀C29S3 = C24.47D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2:9S3192,1154
C22≀C210S3 = C24.67D6φ: trivial image48C2^2wrC2:10S3192,1145

Non-split extensions G=N.Q with N=C22≀C2 and Q=S3
extensionφ:Q→Out NdρLabelID
C22≀C2.S3 = C24⋊Dic3φ: S3/C1S3 ⊆ Out C22≀C21612+C2^2wrC2.S3192,184
C22≀C2.2S3 = C245Dic3φ: S3/C3C2 ⊆ Out C22≀C2244C2^2wrC2.2S3192,95
C22≀C2.3S3 = C24.43D6φ: S3/C3C2 ⊆ Out C22≀C248C2^2wrC2.3S3192,1146

׿
×
𝔽